1,646 research outputs found

    Systems-Based Process Reengineering in Demand Chains

    Get PDF

    Bringing wonder into medicine: a film-based curriculum

    Get PDF
    The proposed workshop presents a film-based curriculum in whole person care.This curriculum includes one 37-minute film (A Certain Kind of Light – screened in 18 film festivals around the world) and six smaller films that are each 5-10 minutes in length, and are accompanied by a journaling process (all of which explore whole person care in medicine). These are not the traditional “teaching” films, but films developed from a more artistic/creative standpoint, for the purposes of affecting attitudes, as much as teaching skills. The workshop will include the following: Introduction: Discussion of how the film-based curriculum impacts culture change as much as personal change of the healthcare practitioner. Content: If there is not enough time to show all 7 films, we would present at least four of them to help the participant understand both philosophy and content of the films, illustrating how whole person care concepts can be taught through an aesthetic avenue to more immediately affect thoughts, feelings, attitudes, and behaviors. In addition, we will discuss the journaling process, clinical rounds, and research that accompany the film curriculum. Finally, the panel will join together in discussing how this type of mechanism contributes to culture shift within an organization. Those presenting in this workshop are those who developed, teach and conduct research on this curriculum. This curriculum is newly developed (as of 2017) and is being used in a variety of healthcare disciplines within one healthcare educational and clinical entity and has been requested by several others

    The Cost of Convenience

    Get PDF

    RESOLVE OVEN Field Demonstration Unit for Lunar Resource Extraction

    Get PDF
    The Oxygen and Volatile Extraction Node (OVEN) is a subsystem within the Regolith & Environment Science and Oxygen & Lunar Volatile Extraction (RESOLVE) project. The purpose of the OVEN subsystem is to release volatiles from lunar regolith and extract oxygen by means of a hydrogen reduction reaction. The complete process includes receiving, weighing, sealing, heating, and disposing of core sample segments while transferring all gaseous contents to the Lunar Advanced Volatile Analysis (LAVA) subsystem. This document will discuss the design and performance of the OVEN Field Demonstration Unit (FDU), which participated in the 2012 RESOLVE field demonstration

    SDSS J210014.12+004446.0: A New Dwarf Nova with Quiescent Superhumps?

    Full text link
    We report follow-up observations of the Sloan Digital Sky Survey Cataclysmic Variable SDSS J210014.12+004446.0 (hereafter SDSS J2100). We obtained photometry and spectroscopy in both outburst and quiescent states, providing the first quiescent spectrum of this source. In both states, non-sinusoidal photometric modulations are apparent, suggestive of superhumps, placing SDSS J2100 in the SU UMa subclass of dwarf novae. However, the periods during outburst and quiescence differ significantly, being 2.099 plus or minus 0.002 hr and 1.96 plus or minus 0.02 hr respectively. Our phase-resolved spectroscopy during outburst yielded an estimate of about 2 hr for the orbital period, consistent with the photometry. The presence of the shorter period modulation at quiescence is unusual, but not unique. Another atypical feature is the relative weakness of the Balmer emission lines in quiescence. Overall, we find a close similarity between SDSS J2100 and the well-studied superhump cataclysmic Variable V503 Cygni. By analogy, we suggest that the quiescent modulation is due to a tilted accretion disk -- producing negative superhumps -- and the modulation in outburst is due to positive superhumps from the precession of an elliptical disk.Comment: 6 pages, 5 eps figures, accepted by PASP Dec. 16th, 200

    A genome-wide survey for SNPs altering microRNA seed sites identifies functional candidates in GWAS

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Gene variants within regulatory regions are thought to be major contributors of the variation of complex traits/diseases. Genome wide association studies (GWAS), have identified scores of genetic variants that appear to contribute to human disease risk. However, most of these variants do not appear to be functional. Thus, the significance of the association may be brought up by still unknown mechanisms or by linkage disequilibrium (LD) with functional polymorphisms. In the present study, focused on functional variants related with the binding of microRNAs (miR), we utilized SNP data, including newly released 1000 Genomes Project data to perform a genome-wide scan of SNPs that abrogate or create miR recognition element (MRE) seed sites (MRESS).</p> <p>Results</p> <p>We identified 2723 SNPs disrupting, and 22295 SNPs creating MRESSs. We estimated the percent of SNPs falling within both validated (5%) and predicted conserved MRESSs (3%). We determined 87 of these MRESS SNPs were listed in GWAS association studies, or in strong LD with a GWAS SNP, and may represent the functional variants of identified GWAS SNPs. Furthermore, 39 of these have evidence of co-expression of target mRNA and the predicted miR. We also gathered previously published eQTL data supporting a functional role for four of these SNPs shown to associate with disease phenotypes. Comparison of F<sub>ST </sub>statistics (a measure of population subdivision) for predicted MRESS SNPs against non MRESS SNPs revealed a significantly higher (P = 0.0004) degree of subdivision among MRESS SNPs, suggesting a role for these SNPs in environmentally driven selection.</p> <p>Conclusions</p> <p>We have demonstrated the potential of publicly available resources to identify high priority candidate SNPs for functional studies and for disease risk prediction.</p

    Diffractive optics fabricated by direct write methods with an electron beam

    Get PDF
    State-of-the-art diffractive optics are fabricated using e-beam lithography and dry etching techniques to achieve multilevel phase elements with very high diffraction efficiencies. One of the major challenges encountered in fabricating diffractive optics is the small feature size (e.g. for diffractive lenses with small f-number). It is not only the e-beam system which dictates the feature size limitations, but also the alignment systems (mask aligner) and the materials (e-beam and photo resists). In order to allow diffractive optics to be used in new optoelectronic systems, it is necessary not only to fabricate elements with small feature sizes but also to do so in an economical fashion. Since price of a multilevel diffractive optical element is closely related to the e-beam writing time and the number of etching steps, we need to decrease the writing time and etching steps without affecting the quality of the element. To do this one has to utilize the full potentials of the e-beam writing system. In this paper, we will present three diffractive optics fabrication techniques which will reduce the number of process steps, the writing time, and the overall fabrication time for multilevel phase diffractive optics

    Enterocyte STAT5 promotes mucosal wound healing via suppression of myosin light chain kinase-mediated loss of barrier function and inflammation

    Get PDF
    Epithelial myosin light chain kinase (MLCK)-dependent barrier dysfunction contributes to the pathogenesis of inflammatory bowel diseases (IBD). We reported that epithelial GM-CSF–STAT5 signalling is essential for intestinal homeostatic response to gut injury. However, mechanism, redundancy by STAT5 or cell types involved remained foggy. We here generated intestinal epithelial cell (IEC)-specific STAT5 knockout mice, these mice exhibited a delayed mucosal wound healing and dysfunctional intestinal barrier characterized by elevated levels of NF-κB activation and MLCK, and a reduction of zonula occludens expression in IECs. Deletion of MLCK restored intestinal barrier function in STAT5 knockout mice, and facilitated mucosal wound healing. Consistently, knockdown of stat5 in IEC monolayers led to increased NF-κB DNA binding to MLCK promoter, myosin light chain phosphorylation and tight junction (TJ) permeability, which were potentiated by administration of tumour necrosis factor-α (TNF-α), and prevented by concurrent NF-κB knockdown. Collectively, enterocyte STAT5 signalling protects against TJ barrier dysfunction and promotes intestinal mucosal wound healing via an interaction with NF-κB to suppress MLCK. Targeting IEC STAT5 signalling may be a novel therapeutic approach for treating intestinal barrier dysfunction in IBD
    corecore